3 research outputs found

    On noise, uncertainty and inference for computational diffusion MRI

    Get PDF
    Diffusion Magnetic Resonance Imaging (dMRI) has revolutionised the way brain microstructure and connectivity can be studied. Despite its unique potential in mapping the whole brain, biophysical properties are inferred from measurements rather than being directly observed. This indirect mapping from noisy data creates challenges and introduces uncertainty in the estimated properties. Hence, dMRI frameworks capable to deal with noise and uncertainty quantification are of great importance and are the topic of this thesis. First, we look into approaches for reducing uncertainty, by de-noising the dMRI signal. Thermal noise can have detrimental effects for modalities where the information resides in the signal attenuation, such as dMRI, that has inherently low-SNR data. We highlight the dual effect of noise, both in increasing variance, but also introducing bias. We then design a framework for evaluating denoising approaches in a principled manner. By setting objective criteria based on what a well-behaved denoising algorithm should offer, we provide a bespoke dataset and a set of evaluations. We demonstrate that common magnitude-based denoising approaches usually reduce noise-related variance from the signal, but do not address the bias effects introduced by the noise floor. Our framework also allows to better characterise scenarios where denoising can be beneficial (e.g. when done in complex domain) and can open new opportunities, such as pushing spatio-temporal resolution boundaries. Subsequently, we look into approaches for mapping uncertainty and design two inference frameworks for dMRI models, one using classical Bayesian methods and another using more recent data-driven algorithms. In the first approach, we build upon the univariate random-walk Metropolis-Hastings MCMC, an extensively used sampling method to sample from the posterior distribution of model parameters given the data. We devise an efficient adaptive multivariate MCMC scheme, relying upon the assumption that groups of model parameters can be jointly estimated if a proper covariance matrix is defined. In doing so, our algorithm increases the sampling efficiency, while preserving accuracy and precision of estimates. We show results using both synthetic and in-vivo dMRI data. In the second approach, we resort to Simulation-Based Inference (SBI), a data-driven approach that avoids the need for iterative model inversions. This is achieved by using neural density estimators to learn the inverse mapping from the forward generative process (simulations) to the parameters of interest that have generated those simulations. By addressing the problem via learning approaches offers the opportunity to achieve inference amortisation, boosting efficiency by avoiding the necessity of repeating the inference process for each new unseen dataset. It also allows inversion of forward processes (i.e. a series of processing steps) rather than only models. We explore different neural network architectures to perform conditional density estimation of the posterior distribution of parameters. Results and comparisons obtained against MCMC suggest speed-ups of 2-3 orders of magnitude in the inference process while keeping the accuracy in the estimates

    On noise, uncertainty and inference for computational diffusion MRI

    Get PDF
    Diffusion Magnetic Resonance Imaging (dMRI) has revolutionised the way brain microstructure and connectivity can be studied. Despite its unique potential in mapping the whole brain, biophysical properties are inferred from measurements rather than being directly observed. This indirect mapping from noisy data creates challenges and introduces uncertainty in the estimated properties. Hence, dMRI frameworks capable to deal with noise and uncertainty quantification are of great importance and are the topic of this thesis. First, we look into approaches for reducing uncertainty, by de-noising the dMRI signal. Thermal noise can have detrimental effects for modalities where the information resides in the signal attenuation, such as dMRI, that has inherently low-SNR data. We highlight the dual effect of noise, both in increasing variance, but also introducing bias. We then design a framework for evaluating denoising approaches in a principled manner. By setting objective criteria based on what a well-behaved denoising algorithm should offer, we provide a bespoke dataset and a set of evaluations. We demonstrate that common magnitude-based denoising approaches usually reduce noise-related variance from the signal, but do not address the bias effects introduced by the noise floor. Our framework also allows to better characterise scenarios where denoising can be beneficial (e.g. when done in complex domain) and can open new opportunities, such as pushing spatio-temporal resolution boundaries. Subsequently, we look into approaches for mapping uncertainty and design two inference frameworks for dMRI models, one using classical Bayesian methods and another using more recent data-driven algorithms. In the first approach, we build upon the univariate random-walk Metropolis-Hastings MCMC, an extensively used sampling method to sample from the posterior distribution of model parameters given the data. We devise an efficient adaptive multivariate MCMC scheme, relying upon the assumption that groups of model parameters can be jointly estimated if a proper covariance matrix is defined. In doing so, our algorithm increases the sampling efficiency, while preserving accuracy and precision of estimates. We show results using both synthetic and in-vivo dMRI data. In the second approach, we resort to Simulation-Based Inference (SBI), a data-driven approach that avoids the need for iterative model inversions. This is achieved by using neural density estimators to learn the inverse mapping from the forward generative process (simulations) to the parameters of interest that have generated those simulations. By addressing the problem via learning approaches offers the opportunity to achieve inference amortisation, boosting efficiency by avoiding the necessity of repeating the inference process for each new unseen dataset. It also allows inversion of forward processes (i.e. a series of processing steps) rather than only models. We explore different neural network architectures to perform conditional density estimation of the posterior distribution of parameters. Results and comparisons obtained against MCMC suggest speed-ups of 2-3 orders of magnitude in the inference process while keeping the accuracy in the estimates

    Denoising Diffusion MRI: Considerations and implications for analysis

    Get PDF
    Development of diffusion MRI (dMRI) denoising approaches has experienced considerable growth over the last years. As noise can inherently reduce accuracy and precision in measurements, its effects have been well characterised both in terms of uncertainty increase in dMRI-derived features and in terms of biases caused by the noise floor, the smallest measurable signal given the noise level. However, gaps in our knowledge still exist in objectively characterising dMRI denoising approaches in terms of both of these effects and assessing their efficacy. In this work, we reconsider what a denoising method should and should not do and we accordingly define criteria to characterise the performance. We propose a comprehensive set of evaluations, including i) benefits in improving signal quality and reducing noise variance, ii) gains in reducing biases and the noise floor and improving, iii) preservation of spatial resolution, iv) agreement of denoised data against a gold standard, v) gains in downstream parameter estimation (precision and accuracy), vi) efficacy in enabling noise-prone applications, such as ultra-high-resolution imaging. We further provide newly acquired complex datasets (magnitude and phase) with multiple repeats that sample different SNR regimes to highlight performance differences under different scenarios. Without loss of generality, we subsequently apply a number of exemplar patch-based denoising algorithms to these datasets, including Non-Local Means, Marchenko-Pastur PCA (MPPCA) in the magnitude and complex domain and NORDIC, and compare them with respect to the above criteria and against a gold standard complex average of multiple repeats. We demonstrate that all tested denoising approaches reduce noise-related variance, but not always biases from the elevated noise floor. They all induce a spatial resolution penalty, but its extent can vary depending on the method and the implementation. Some denoising approaches agree with the gold standard more than others and we demonstrate challenges in even defining such a standard. Overall, we show that dMRI denoising performed in the complex domain is advantageous to magnitude domain denoising with respect to all the above criteria
    corecore